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ABSTRACT

An iteration method for solving an integral representation of Maxwell's

equation is presented. In this method, the scattering body is divided into

lit and shadow side regions separated by the geometric optics boundary. The

total current at any point on the surface of the scatterer, induced by an

incident field, is the sum of an approximate optics current and a correction

current. Both of these currents are computed by iteration. The general

theory is presented and applied to the problem of scattering from a

two-dimensional square cylinder. The results are compared with the method of

moments and excellent agreement is obtained. Due to its structure, the

* iteration method, unlike the method of moments, does not give spurious results

at internal resonances of the scatterer. The method is applicable to complex

structures and can be used for non-perfect conductors.
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1. INTRODUCTION

In this report, a method for computing the electromagnetic scattering

properties of complex objects is presented. This method can deal with

electrically small or large bodies alike and is not restricted to perfect

conductors. It is an iteration method based on an integral representation of

Maxwell's equations.

In Chapter 2, a brief review of the integral equations for the

electromagnetic field is given. It is shown how they can be combined with

U impedance boundary conditions in order to deal with non-perfect conductors and

as a special case of interest, coated perfect conductors.

Chapter 3 takes a look at the AS-MM hybrid diffraction technique which is

*the starting point of the iteration method. In this hybrid technique, the

current, induced on the surface of a scatterer by an incident field, is

approximated by optics currents which are supplemented by correction currents

*in order to give the true current. The approximate optics currents are

computed by iteration, whereas, the correction currents are computed by using

the moment method in certain "moment method regions". Although this approach

has been shown to be successful for simple geometries, the task of dividing up

a complex body into moment method and asymptotic regions is a formidable

one. These moment method regions complicate the programming even for perfect

0 conductors let alone non-perfect ones.

In an attempt to do away with the moment method regions, the iteration

method was developed. This method is described in Chapter 4. The two methods

are basically similar in that they both define the same approximate optics

currents and the samne correction currents. However, no moment method regions

are defined and the correction currents are found by iteration just as are the

optics currents.

01
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In Chapter 5, some numerical results for the two-dimensional problem of a

square cylinder are exhibited. Results for the iteration method are compared

to results obtained by the method of moments, which is considered exact. The

results are in general excellent except for small regions in the shadow side

for large bodies. This question is examined in Chapter 6 and a possible way

of improving the iteration method, by changing the iteration procedure and the

approximations made, is suggested. Chapter 7 is devoted to a summary and a

few concluding remarks.

42



2. THE INTEGRAL EQUATIONS FOR SCATTERING FROM NON-PERFECT CONDUCTORS

Consider an arbitrarily shaped non-perfectly conducting body situated in

a vacuum. Let the body be illuminated by an incident electromagnetic field

( i, j~i ). Then the total electric and magnetic fields at an observation

point are given by (with suppressed time variation exp(jwt))[1]

= T~i( ) - T J {jn o(n'xA) G(r) - (n'x)xv' G(r)
S

- (n' • V G(r)} ds' (1)

+ T j {j (n'xt) G(r) + (n'x) x ' G(r)
S "o

+ (n' v ) ' G(r)} ds' (2)

where T (1 -/4w) "1 and # is used to denote the principle value integral

over s, i.e., the integral over the closed surface excluding an E neighborhood

of the singularity in G(r) at r = 0. The absolute value of the solid

angle, Q, subtended by the deformed surface (in taking f) at the field

point A must be determined from the geometry of the surface. However, if s is

smoooth at A then s = 2n (T = 2) and if A is not located on the surface

then 02 = 0 (T = 1). All the parameters and variables (a, no, etc.) connected

with the electromagnetic field are defined in Appendix A. Note that A is

allowed to be located on a surface whose tangent is not a differentiable

function of position, however, the field is required to possess a finite mean

value at . Equations (1) and (2) are referred to as the electric field

integral equation (EFIE) and the magnetic field integral equation (MFIE).

* • .- I



Introducing the equivalent sources:

= nxA, A -nxt (3)

Equations (1) and (2) can be rewritten as

= T~ )- T (Jano0 G(r) + Axe' G(r) - (n' * ) ' G(r)} ds' (4)
5

(A= T)i () + T A - 2 G(r) + x ' G(r) + (n' A) ' G(r)} ds' (5)
S no

where, from Maxwell's equations:

n • = J ' • n' A - (6)
ano

The scattered field can be obtained from Equations (4) and (5) as follows:

= ( O) - pi(R) (7)

and since for A # S, T 1, Equations (4) and (5) together with (7) and (8)

yield

s = {jno G(r) + ix ' G(r) - (n' * t) ' G(r)} ds' (9)
S

q S(P) f G(r) + xV' G(r) + (n' • ?) ' G(r)} ds' (10)
S no

6



The equivalent surface currents can be found from Equations (1) and (2) by

considering c E s with s smooth, so that T = 2 and a unit vector n can be

defined at on s. Then upon taking the vector cross product of n with (1)

and (2) and using Equation (3), Equations (1) and (2) yield:

-() 2 nxi(A) - 2 nxf {janoIG(r) + Axv'G(r) - (n' t) 'G(r)} ds' (11)
0

(A)= 2 nxAi(A) + 2 nx 4{- L- G(r) + 3x 'G(r) + (n' • ) 'G(r)} ds' (12)
S no

with n' • and n' • given by Equation (6).

Equations (11) and (12) are two coupled equations for the surface

currents I and A, which when computed can be used in Equations (9) and (10) to

find the scattered field. These equations can be decoupled by using the

impedance boundary conditions [2]:

nxA = Z 3 (13)

or

X3 - A (14)

On substituting (13) and (14) in (11), (12), and (6), the following decoupled

equations are obtained:

= 2nxti(A) - 2nx {j'(nx A) G(r) + Axe' G(r) (n' t) )' G(r)} ds' (15)
s r

3 2nxi (A) + 2nx I{jaZr(flX) G(r) + x ' G(r) + (V' • ) V' G(r)} ds'(16)

with n' • and n' • given by:



n * =--~'(n'x), ~t~= ~-E~'(nh~5)(17)

Where, Zr Z/ is the relative surface impedance of the scatterer.

The complexity of the above integral equations can be reduced by

considering a specific physical situation. The scatterer that will be

considered here is that of a perfect conductor coated with a layer of

non-perfectly conducting material. Furthermore, the following assumptions

will be made [3]:

1. The index of refraction of the coating is very large and has a large

* imaginary part. INI >> 1 and Im(N) >> 1.

2. The fields outside the body vary slowly with respect to the dimension of

the interior wavelength.

3. The thickness, d, of the coating, is less than the principal radii of

curvature of the outer surface, and 3d << INI

4. The radii of curvature of the surface are large compared to the interior

wavelength.

U~nder these conditions, the wave inside the coating will be TEM with

* direction of propagation inward and normal to the surface. Hence,

ne = =0 (18)

and the surface impedance ,Z, will be independent of the polarization of the

incident radiation and will be given by:

Z =jn tan No~d (19)



which is the expression that would be obtained for Z without the above

assumptions but for normal incidence. Finally, it should be noted that when

dealing with coated edges, Equation (19) does not hold at the edge or within a

few skin depths (of the coating material) from the edge.

Substituting Equations (18) in Equations (15) and (16) yields the

following expressions for the surface currents:

-A(A= 2nxti(A) - 2nx +{ -(nxA) G(r) + Mx ' G(r)} ds' (20)
r

I(A)= 2nx'(A) + 2nx f jBZr( n(n) G(r) + 3x 'G(r)} ds' (21)
s

whereas, from Equations (9) and (10), the scattered fields are given by

ts = (A {jono G(r) + Ax+' G(r)} ds' (22)

"S f { A J i G(r) + Ix+' G(r)} ds'

s )0

For a perfect conductor, A = nxt = n = 0 and a similar analysis to that

given above leads to

SJin 0

nx() = nx f {jn 0 i G(r) "--a- ( ' ") ' G(r)} ds' (23)

()= 2nx'() + 2nx f Ix ' G(r) ds' (24)

-..- n J'. 0  G(r) n o' G(r)} ds' (25)

"'.. S(A) = f Jx+' G(r) ds' (26)

S

- 7?
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3. THE AS-MM HYBRID DIFFRACTION TECHNIQUE

The general theory of the AS-MM hybrid diffraction technique is described

in detail in [4]. This technique is based on the MFIE as given by Equation

(24). The basic approach is to divide the total surface S of the body

into S z and Ss , which represent the lit and shadowed regions, respectively.

The currents in these regions are given by (26), which can now be written as:

I t(R) = 2nxi(A) + 2nx If x'v' G(r) ds' + 2nx Sxj' G(r) ds' (27)

st
S Ss

js(A) = 2nxAi(A) + 2nx l 5x ' G(r) ds' + 2nx l Sx , G(r) ds' (28)

S S

Each region is further divided into an asymptotic (AS) region and a moment

method (MM) region. The MM regions are taken to be small regions on either

side of the shadow boundary ana the AS regions as the remaining regions

in S and Ss .  In order to be able to solve for 3t and Is in the AS and MM

regions, it is assumed that Is in Equation (27) is small so that it can be

neglected. This defines an approximate lit side optics current 31 given by
op

"t (A) = 2nx O(A) + 2 nx + v OopXV G(r) ds' (29)
OP sOP

Then replacing I in (28) by Ix defines an approximate shadow side optics
op

current

I

(R) 2nx( n) + 2nx 3 xV' G(r) ds' + 2nx 3s xV-- G(r) ds' (30)

op sI p  s P

* The exact currents in Sg and Ss are then given by

r 8



is () 3s (A) + Is(A) (32)

op

Substituting Equations (31) and (32) into the MFIE (27) and (28) and using

(29) and (30), the following expressions for the correction

currents I' and Is are found:

o= 2nx 3 v G(r) ds' + 2nx4 tlx ' G(r) dsa + 2nx+ tSx ' G(r) ds' (33)
Ss  St Ss

is ( = 2nx j ISxV' G(r) ds' + 2nx 1x+V' G(r) ds' (34)
Ss  S

The process that is defined for solving the above system of equations is as

follows. 3p is computed by iterating Equation (29) with 2nx~i(R) the initial
op

current. Then I s is computed by iterating Equation (30)

using 2nxHi(A) + 2nx f IXV G(r) ds' as the initial current. Equations (33)OP
I i s s Tecreto

and (34) are now written down for SMM, SASs SMM and SA. The correction

currents in the MM regions are now computed by neglecting the integrals over

the correction currents in the AS regions. It is argued that without ignoring

those current terms containing integrals over IAS and in the expressions

for MM(A) and I'M(A), it is not possible to derive sets of equations which

can be solved by the moment method. The correction currents in the AS regions

can now be computed by integrating over the moment method correction currents,

again ignoring those current terms containing integrals over I ands
AS AS'

The above process defines a first-order approximation. A second-order

approximation is obtained by substituting the values obtained for 11 and Is in

the MM and AS regions in the integrals for t M(A), IMM(A), IXS(A) and tAS(A )

9
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*but this time without neglecting the integrals over I'andIs HgeorrAs As*Hge re

approximations are obtained in a similar fashion.

It was found in [4] that it was necessary to use second-order, and in

some cases, third-order approximations to yield a good value for the

current. However, no criterion was found for fixing the size of the MM

regions.

10



4. THE ITERATION METHOD

The iteration method is based on the AS-MM hybrid technique and is an

attempt to do away with the MM regions of the latter. Hence, the exact

current is written as

=5(A) + 10~) (35)op

and the surface of the scatterer is divided into lit and shadow regions

separated by the geometrical optics shadow boundary. 31 (A) and Is (4) are
OP OP

given by Equations (29) and (30), respectively, and are solved by iteration.

The initial currents for S I and S5 being the same as those of the AS-MM hybrid

method.

Having solved for the optics currents, the correction currents are now

considered. Instead of using MM regions as in AS-MM, Equations (33) and (34)

are now solved by iteration just as the optics current were. Only one

approximation is called for here and that is the neglecting of the integral

over Is in Equation (33). In second- and higher-order approximations, this

integral is put back in Equation (33).

The full set of equations for the iteration method will be given below.

These equations are based on Equations (20) and (21) describing the magnetic

and electric surface currents induced on a perfect conductor coated with a

thin layer of material with a very large refractive index. The magnetic

correction currents will be denoted by ~.Hence, the exact magnetic current

is given by

A(A) A +pA NA() (36)

* 1



Since the equations are rather cumbersome for the general case, the following

two operators will be defined:

L[3] 2nx j lxv*' G(r) ds' (37)]

K[I] 2nx + ja(nxJ) G(r) ds' (38)

The optics currents are given by.

.I

3' 2;xA + K[3' Z 3+ L[11 (39
op op r OPJ

I' =2;x'+ K3'Z +L[11 pr op[3 L (40)
op op r OP op r OPiV

A -2nxE + /Z + L[A 3 (41)
op OP r OP

~ -2nxE~ + K[M /Z] + L[A' K[As /Z]+L[As (42)
op OP r OP OP r OP

iThe correction currents are given by:

[L[t] + Z + r3 [xI' G~rsds (43)

rop r OPr

I K[tZ + L[ ] + K[d)Z + Ldts] (44)
r r

xK[/Z + LCAX] + K[AS /Z + L[A5  {K[ 5/Z] + L[hs]9 (45)
OP r OP r

s= K[ Z] + L[k] + K[S/Zr] + L[Ap] (46)

12
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The case of a perfect conductor can be retrieved from these equations by

setting =A 0 and then Zr =0. The terms in the braces are set to zero

for the first-order calculation.

4
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5. THE SQUARE CYLINDER

The first application of the iteration method to be considered is that of

a two-dimensional cylinder of a square cross section. The computer program

for the iteration method was set up to solve for the electric currents only,

since, as can be seen from Equations (39) - (46), the magnetic currents can be

obtained from the same program by simply performing the duality

transformation:

Z r- I/Z (47)r r

The geometry under consideration is shown in Figure 1. The computer

program uses the angle of incidence 0i, although the complementary

angle a will also be referred to here. For a two-dimensional scattering

problem

G(r) L H (2 r) (48)

(2)
V G(r) = -(- a H (Br) (49)4j I

(2) (2)where H and HI are the Hankel functions of the second kind of order

zero and one, respectively. Due to symmetry, the angle of incidence can be

restricted to

K450 a < 900 (50)

14F -



where the case of grazing incidence has been omitted for the time being. With

the above restriction, sides 1 and 4 are the lit sides, whereas sides 2 and 3

are the shadow sides. The distance d along the perimeter of the cylinder is

measured in an anticlockwise direction from the origin of '.he coordinfa-te

system which is situated at the corner A.

The incident field is given by

to Z e-ja (51)

where, u is the direction of propagation of the incident field and is the

radius vector to the observation point.

U For the case of a perfectly conducting square cylinder, as for any

structure comprised of planar surfaces, the principle value integrals reduce

to ordinary integrals due to the fact that the L[I], or L[1], terms are

identically zero for the integration and the observation point on the same

side of the cylinder. However, the introduction of a finite conductivity

gives rise to K[Ai], and K[AI] terms for which the principle value does have to

be taken. The calculation of these terms is discussed in Appendix B.

Figures 2 and 3 show the magnitude and phase, respectively, of the

electric current on a .705A wide cylinder with a surface impedance

of Z = (.56, - .16). The computation was carried out for the first order
r

only. Due to the poor result as compared to the method of moments, MM,

computation (considered exact) [5], the same run was made again, but this time

for a perfect conductor. The results are shown in Figures 4 and 5. Despite

the fact that the overall agreement is much better this time, there is still

an unexplained discrepancy at the lit edge A.

0 15



In an attempt to solve this specific problem and at the same time to

retain the problem at a reasonable level of complexity, the case of interest

was restricted to that of a perfect conductor.

Clearly, there is some difficulty involved in computing the currents

close to the edge of the cylinder. In order to understand this problem,

consider what happens when computing the optics current at on side ':

Iop(z1) = 2nxH1 + 2nx f W 4) x& G(r) dz. (52)

where X = ix and ' = y. Then, for field points close to the edge A

(ZI  0) and integration points close to A ( - 0), the

distance r = - ' + 0 and the Hankel function has the following small

parameter behavior:

H(2) ( r) j 2 (53)

Numerical integration of the inverse distance function 1/r as r calls for

very samll subdivisions in order to minimize the error. The closer the edge

is approached, the smaller the subintervals would have to be. This process is

clearly unfavorable since the computation time would increase

correspondingly. An analytical evaluation of Equation (52) (for details see

Appendix C) as 2 . 0 and Z4 + 0 yields

J'op + 0 ) 2Hi ( z I + 0) '(i +4)(4
11 4Jc,(. )= )- 2Jop(2. 0) (54)

* Numerically integrating the integral in (52) for points close to the edge, but

avoiding numerical instability, would mean that the minimum possible

- 16
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values of x., and xwould be about 0.02A and hence the edges would be

truncated. In Figure 4, the minimum value of approach to the edges, 6, WaS

taken to be 6 =.01X giving an all around instability. On the other hand,

Equation (54) sets no lower bound on the value of 6, so that the edges cdn be

left intact.

The result of numerically integrating Equation (52) with the minimum

values of x I and z given by 6 = O.02X is shown in Figures 6 and 7 which show,

respectively, the magnitude and the phase of the current induced on

a 0.6X side square cylinder for a 450 Notice the overall discrepancy

between the current computed by MM and that computed by the iteration

method. Figures 8 and 9 show the vast improvement obtained by using Equation

(54) for the iteration method, wii the minimum values of z 1 and 2.4 taken to

be 6 = 10 6 X. This value was henceforth taken as the* fixed minimum vaiue

f or 6. The influence of the order of the approximation can be seen by

comparing Figures 10 and 11, a first order calculation, with Figures 8 and 9,

a third order calculation. As can be seen, there is an overall improvement in

the value of the magnitude of the current in going from first order to third

order, except in the deep shadow region.

Further thi rd order results for 6 =10- 6 X are shown in Figures 12 to

21. Figures 12 to 15 are for a = 450, w =2.4X and w =3.7x, whereas Figures

16 to 21 are for a 650, w =.6X, 2.4X and 3.7X.
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6. IMPROVING THE ITERATION METHOD

The final result of any iteration method is dependent on the initial

value used to start off the iteration procedure. As already explained in

Chapters 2 and 3, the present iteration method is based on the AS-MM so

that I'is iterated first with an initial value of 2nxA' and then 'isop op

iterated with an initial value of 2nxA' + 2nx f 4 x G(r) ds'. Figures 22OP

and 23 show the resulting magnitude of the optics current as compared with the

MM for W =.6X and 3.7X and c~650. Note that in both cases, the shadow side

optics current is much closer to the true current than the lit side optics

current.

* The process described above involves taking the shadow side current as

zero when iterating the lit side current. This explains the relatively smooth

slow varying result obtained for the lit side optics current, for there are no

iterations with the shadow side at this stage. On the other hand, when

computing the shadow side current, interaction with the lit side is taken into

account. This explains why the shadow side optics current follows more

closely the true current than does the lit side optics current.

A possible solution to this problem would be to start off by

computing Is and taking i'as 2nxH . This would allow for interactionop op

between the shadow side and a reasonable approximation for the lit side.

Having iterated is I the lit side optics current can be computed

Feusing is which would give a much better result than formerly when Iswas
OP op

taken as zero. This approach, as well as others, will be tried out in the

near future.
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7. CONCLUSION

An iteration method for solving the MFIE and the EFIE for a general

scatterer has been presented. This method is similar to the AS-MM hybrid

technique in that the true surface current is written as the sum of

approximate optics currents and correction currents on the lit and shadow side

*regions of the body. The two methods differ in the way in wnich the

* .correction currents are computed. In the hybrid technique the lit and shadow

areas are further subdivided into moment method and asymptotic regions, the

former being the smaller. The MM region correction currents are then solved

by using the method of moments, while neglecting their interaction with the

asymptotic regions. The asymptotic correction currents are then obtained by

integrating the moment method region currents numerically, while again

neglecting the interaction between the asymptotic region. These interactions

are accounted for in second-order and higher approximations. In the iteration

method, the correction currents are obtained by iteration just as ' .( optics

currents are. The only approximation made when computing the correction

currents via the iteration method being the neglecting of the contribution of

J ~the shadow side correction current when computing the lit side correction.

current. Again, in second- and higher-order approximations this contribution

is taken into account.

As an example, the case of a two-dimensional cylinder of square cross

section was considered. The currents obtained by the iteration method were

0 compared to the currents obtained by the method of moments. The ove rall1

excellent agreement, except for small regions in the shadow region for large

* bodies, suggests that the order of the iteration process should be changed,

viz., the shadow side optics currents should be computed first and then the

lit side optics currents. This small discrepancy in the shadow region does

* 19



not, however, minimize the importance of the iteration method which has

successfully done away with the necessity of a moment method region on the

surface of the scatterer.

The formalism was shown to be adaptable to problems of non-perfectI

conductors, and the special case of a coated perfect conductor was considered.

Finally, it is pointed out that the iteration method does not giveI

erroneous results for geometries having an interior resonance due to the fact

that the inhomogeneous integral equation for the surface current is formulated

as two inhomogeneous integral equations, one for the optics currents and one

for the correction currents and neither of these currents alone can sustain a

zero tangential field at the surface of the scatterer. The iteration method

has another advantage over the moment method in that it can be used for

electrically large bodies that the MM cannot handle, since it is not limited

by computer storage.

202



REFERENCES

1. Poggio, A. J. and E. K. Miller, "Integral Equation Solutions of Three-
Dimensional Scattering Problems," in Computer Techniques for
Electromagnetics, R. Mittra, Ed. Pergamon Press, New York, 1973, Ch. 4.

2. T.B.A. Senior, "Impedance Boundary Conditions for Imperfectly Conducting
Surfaces," Appl. Sci. Res., Vol. 8(B), 1960, pp. 418-436.

3. Crispin, J. W., Jr., and K. M. Siegel, "Method of Radar Cross Section
Analysis," Academic Press, New York, 1968.

4. Kim, T. J. and G. A. Thiele, "A Hybrid Diffraction Technique, General
Theory and Application," IEEE Trans. Ant. Prop., Vol. AP-30, No. 5, Sept.
1982, pp. 888-897.

5. Richmond, J. H., "An Integral-Equation Solution for TE Radiation and
Scattering from Conducting Cylinders," Report 2902-7, The Ohio State
Univerity ElectroScience Laboratory; Department of Electrical
Engineering, April 1973.

6. Harrington, R. F., "Time-Harmonic Electromagnetic Fields," McGraw-Hill,
New York, 1961.

7. Erdelyi, A., "Asymptotic Expansions," Dover Publications, New York, 1956.

8. Abramowicz, M. and I. A. Stegun, "Handbook of Mathematical Functions,"
National Bureau of Standards, Washington, 1970.

I
ri'

*21 p



-!n mI .n c - --.m _ , - . - . .-. ,

APPENDIX A

DEFINITION OF ELECTROMAGNETIC QUANTITIES

The complex dielectric constant is given by

E: - j =E - = r - j '  - j tan6,)

The complex magnetic permeability is given by

= - J." = uo(P r - j =r )  P'oor = our - j tan6 )

Ap

A prime denotes the real part of a complex quantity

':- A double prime denotes the imaginary part of a complex quantity

A small subscript o refers to vacuum

A small subscript r means that quantity relative to the same quantity in

vacuum.

E' =--= dielectric constant
r F

"= , where o = conductivityr E W
0

Pr relative permeabilityU r = p i

6o

--- =relative magnetic loss factor
r =  Io

6 is the magnetic loss angle

22



bN K

6 is the dielectric loss angle

N = / p = complex refractive indexr r

86 = ~ ~~ . = complex propagation constant

a a' - ja "

hence, 8 = 8 N, A A /N
0 0

n irn°  = absolute impedance of medium

nr = ir relative impedance of medium

no free space impedance
0

WV = an

• rl@8

6 skin depth

where0

7=2 r L( r . r Cr ) + (E ,, + ,r,,

0 23



APENDIX B

CALCULATION OF THE PRINCIPLE VALUE INTEGRALS

The integrals defined by Equation (38) are singular as r + o. These

integrals are computed by dividing them into subintervals which are integrated

separately. The subinterval containing the singularity is of the form

612 H(2)
I j (at) d. (8.1)

-6/2

and is computed by taking its principle value. Here, £ is a length parameter

and 6 is the size of the subinterval.

The accuracy of the above integration depends on the width, 6, and on the

approximation used for the asymptotic expansion of the Hankel function. The

usual small argument expression used for H(2 ) is [6]:
0

H(2) ()--1 - ?n(j! . yat) (B.2)

substituting (B.2) in (B.1) yields a principle value of

I 6{I - -2 -n("- J  (B.3)

where xny = .57721566 is Euler's constant and e is the natural base of

logarithms.

• The values of H(2 ) as given by (B.2) can be compared with its exact~0
t' values and it is found that Eq. (B.2) is in error for (x/X) > .02, giving riseto an error in Eq. (B.3). From asymptotic analysis [7], we know that we can

* use larger values of (x/A) and decrease the error by including higher order

S 24
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terms. The asymptotic expansion for H(2) including terms of the
0

2order (at) is [8]

(2 102j [1 .2 1 -i

H~ Wi -(13t Xn(- yot)J ] Io (B.4)

yielding the following expression for the principle value of the integral I:

-- 6{[I - T8-06)e 1 1 - JT zn4--J-7 6  (B.5)

Equation (8.4) is accurate for values of (./X) < .1. For a value of 6 .12X,

Eq. (8.3) has an error of 1.4% in comparison to Eq. (5), which can be

considered exact for this value of 6.

S25
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APPENDIX C

CALCULATION OF THE EDGE CURRENTS

In this appendix, the result given in Eq. (63) will be derived. The

derivation will be given for a wedge of internal angle a. The geometry

involved and the definitions of the various quantities are described in Figure

24. The equation to be considered is

(z) = 2nxi (z) + 2nx f IB(tI)x ' G(r) di.' (C.1)

Now consider the integral

) 2x ,x6' G(r) dt' (C.2)

where

3B(W ) JB(X.')i , ' G : 4- H,2 r

therefore

- ( j nx(t'xr')oB(X')H(2)(or) d' (C.3)

Now

0
nx(t'xr') - nx[t'x{(r* t')t' + (r-' n')n'}]

= t(r' n') t t cosp

* 26
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hence,

L

S 2 - (V,) H 2)cos* dx' (C.4)
1=0

where cos* - sina (C.5)r

V+ X.2
and r = /. 2 2£ £'cos (C.6)

11
Using the small argument expansion for H(2):

(2 () 2H 1 (or)

we get,

1(9.) = 2 I jB(9 ,) j 2r do'
2 0r

where L is much greater than t and ar is much smaller than unity. The above

expansion for the Hankel function can be used since we are only interested in

a small neighborhood around the edge. Therefore,

LS

= j (, + o) Xsin L (C.7)

0 k,2 + X2 .2£'cosa

This is a standard integral which can be integrated to give

() = t jB, o) tan'l(L'.cosaz - tan-1 - cota)

therefore,

27
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4

t B o) tan-1 tan-(- cotci)]

-- t [BnI(+ ) o)+

tJB(' o) (C.8)

Substituting Eq. (C.8) in (C.1) with 9 + o gives:

iA(I+ o) = 2nx~ i(t + o) jB( , + o) c,)

or

j A ( + o ) 2 H i ( x o ) Bg ( k ., + o ) CI ( C .9 )

For the example considered in this report

f n2, hence -

2

o

-
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